## 5-9 Factoring Pattern for $ax^2 + bx + c$

Objective: To factor general quadratic trinomials with integral coefficients.

## **Patterns**

Factoring pattern for  $ax^2 + bx + c$ : (px + r)(qx + s).

| Example 1          | Factor $2x^2 - 3x - 9$ .                                                                                                                                                                  |                                         |                                                                                                                                  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Solution<br>Clue 1 | Because the trinomial has a negative and the other will be positive.                                                                                                                      | constant term, one of                   | r and s will be negative                                                                                                         |
| Clue 2             | You can list the possible factors of the quadratic term, $2x^2$ , and the possible factors of the constant term, $-9$ .                                                                   | $\frac{\text{Factors of } 2x^2}{2x, x}$ | Factors of -9 1, -9   -1, 9 3, -3   -3, 3 9, -1   -9, 1                                                                          |
| 18 mg              | Make a chart to test the possibilities to see which produces the correct linear term, $-3x$ .<br>Since $(2x + 3)(x - 3)$ gives the correct linear term, $2x^2 - 3x - 9 = (2x + 3)(x - 3)$ | (2x+9)(x-1)                             | Linear Term $(-18 + 1)x = -17.$ $(-6 + 3)x = -3x \leftarrow$ $(-2 + 9)x = 7x$ $(18 - 1)x = 17x$ $(6 - 3)x = 3x$ $(2 - 9)x = -7x$ |

## Factor $10x^2 - 11x + 3$ . Example 2 Solution Because the trinomial has a positive constant term and a negative linear term, both rClue 1 and s will be negative. Factors of $10x^2$ Factors of 3 List the factors of the quadratic Clue 2 term. $10x^2$ , and the negative x, 10x-3.-1factors of the constant term, 3. -1. -32x, 5xLinear term Test the possibilities to see Possible factors (x-3)(10x-1) (-1-30)x = -31xwhich produces -11x. Since (2x - 1)(5x - 3) gives the correct (x-1)(10x-3) (-3-10)x = -13xlinear term, $10x^2 - 11x + 3 =$ (2x-3)(5x-1) (-2-15)x = -17x(2x-1)(5x-3) (-6-5)x = -11x(2x-1)(5x-3).

Factor. Check by multiplying the factors. If the polynomial is not factorable, write prime.

1. 
$$2x^2 + 5x + 2$$
 2.  $2n^2 - 7n + 3$  3.  $5y^2 - 9y - 2$  4.  $3a^2 + 7a + 2$  (3a + 1)(a + 2) 5.  $4y^2 - 5y + 1$  6.  $2a^2 + 11a + 5$  7.  $5a^2 - 11a + 2$  8.  $7y^2 - 9y + 2$  (3a + 1)(a + 2) 6.  $2a + 1$ (a + 5) (5a - 1)(a - 2) (7y - 2)(y - 1)

Study Guide, ALGEBRA, Structure and Method, Book 1 Copyright © by Houghton Mifflin Company. All rights reserved.

(2x + 3)(x - 3).

NAME

5-9 Factoring Pattern for  $ax^2 + bx + c$  (continued)

Factor. Check by multiplying the factors. If the polynomial is not 9. prime factorable, write prime. (6k-1)(2k-1) (4x-3)(x+5)(2a + 5)(a + 1)

**9.**  $2k^2 - 5k - 1$  **10.**  $12k^2 - 8k + 1$  **11.**  $4x^2 + 17x - 15$  **12.**  $2a^2 + 7a + 5$ 13.  $8y^2 + 6y - 9$  14.  $9x^2 + 3x - 2$  15.  $7k^2 - 11k - 6$  16.  $4u^2 - 8u - 5$ 

DATE

-(2x-1)(5x+3)

(4y-3)(2y+3) (3x+2)(3x-1) (7k+3)(k-2) (2u+1)(2u-5)**Example 3** Factor  $5 - 7x - 6x^2$ .

 $5 - 7x - 6x^2 = -6x^2 - 7x + 5$  Arrange the terms by decreasing degree. Solution  $=(-1)(6x^2+7x-5)$  Factor -1 from each term. = (-1)(2x - 1)(3x + 5) Factor the resulting trinomial. = -(2x - 1)(3x + 5)

Note: If you factor  $5 - 7x - 6x^2$  directly, you will get (5 + 3x)(1 - 2x). Since (1 - 2x) = -(2x - 1), the two answers are equivalent.

Factor. Check by multiplying the factors. If the polynomial is not factorable, write prime. -(3x - 5)(x + 2)

18.  $10 - x - 3x^2$ 19.  $3 - x - 10x^2$ 17.  $10 - 9y - 2y^2$  prime 21.  $10 - u - 2u^2$ 22.  $5 + 8x - 4x^2$ **20.**  $3 - 7x - 6x^2$ -(3x - 1)(2x + 3)-(2u + 5)(u - 2)-(2x - 5)(2x + 1)

**Example 4** Factor  $5a^2 + 2ab - 7b^2$ .  $5a^2 + 2ab - 7b^2 = (a)(5a)$  Write the factors of  $5a^2$ . Solution = (a - ?)(5a + ?) Test possibilities. = (a - b)(5a + 7b)

> *Note:* If you write (a + ?)(5a - ?) as the second step, you will not find a combination of factors that produces the desired linear term.

> > 23. (x - 5y)(x + 4y)

Factor. Check by multiplying the factors. 24. (2a - 3b)(2a + b)(3a + 4b)(a - 3b)**24.**  $4a^2 - 4ab - 3b^2$  **25.**  $3a^2 - 5ab - 12b^2$ 23.  $x^2 - xy - 20y^2$ 

**26.**  $5a^2 + 2ab - 7b^2$  **27.**  $2x^2 - xy - 3y^2$  **28.**  $8y^2 - 6yz - 9z^2$ 

Mixed Review Exercises 2.(x-3)(x-4)5.(3y + 11x)(3y - 11x)

(5a + 7b)(a - b)

7. (y + 9)(y + 4)Factor.

1.  $x^2 - 196$  (x + 14)(x - 14) 2.  $x^2 - 7x + 12$ 3.  $r^2 - 5r - 36 (r - 9)(r + 4)$ **4.**  $c^2 - 10c + 25$  **(c - 5)<sup>2</sup> 5.**  $9y^2 - 121x^2$ 6.  $4a^2 - 25$  (2a + 5)(2a - 5)

7.  $y^2 + 13y + 36$ 8.  $p^2 + 14p + 49 (p + 7)^2$  9.  $9y^2 + 12y + 4 (3y + 2)^2$ 

12.  $b^2 - 3b - 54$ 10.  $m^2 - m - 56$ 11.  $n^2 + 13n + 36$ (b - 9)(b + 6)(m - 8)(m + 7)(n + 9)(n + 4)

Study Guide, ALGEBRA, Structure and Method, Book 1

(2x - 3y)(x + y) (4y + 3z)(2y - 3z)

89